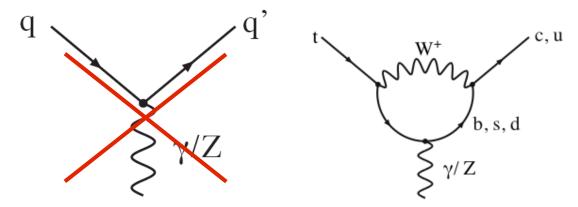


Flavor changing neutral currents (FCNC) in $t\bar{t}$ decays at DZero

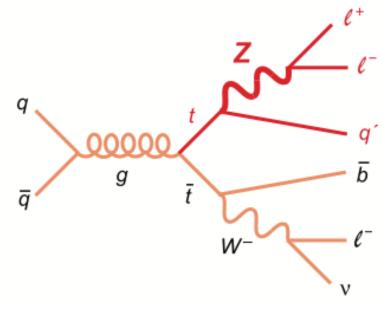
Carrie McGivern
University of Kansas
On behalf of the DZero Collaboration
Supersymmetry 2011, Aug. 29, 2011

Outline

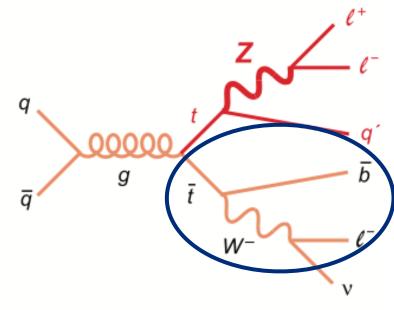


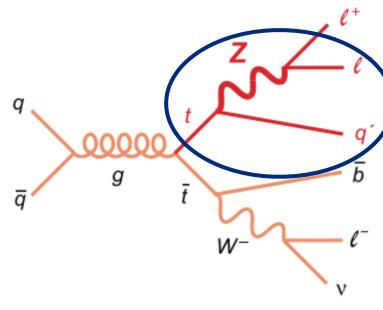
- Motivation
- DZero detector
- Event selection
- FCNC signal modeling
- Limits on branching ratio $B(t\rightarrow Zq)$ and v_{tqZ} coupling
- Summary

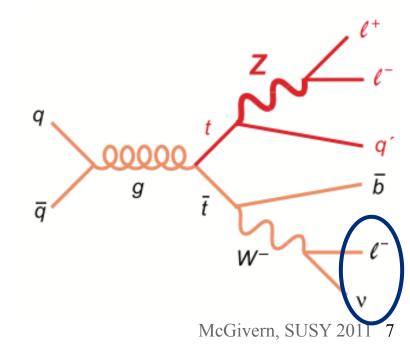
- The standard model (SM) has been found to be in excellent agreement with experimental results
- SM Lagrangian does not contain flavor changing neutral currents terms
 - t→c,u quarks transitions only possible through radiative corrections

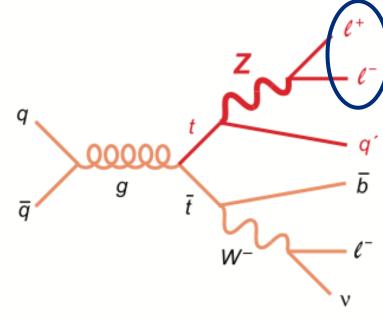


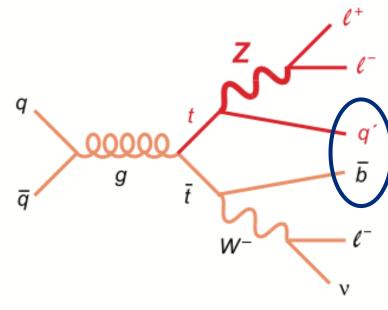
- Expected branching ratio of t \rightarrow Zc is $\sim 10^{-14}$, while t \rightarrow Zu is $\sim 10^{-17}$
- Some theories beyond SM predict B~10⁻⁴
- Observation would certainly point to physics beyond the SM


- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section: Physics Letters B 695, 67 (2011)
- Search for signal using new final state: X is any number of jets $p\bar{p} \to t\bar{t} \to ZqWb \to \ell\ell\ell\nu + X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

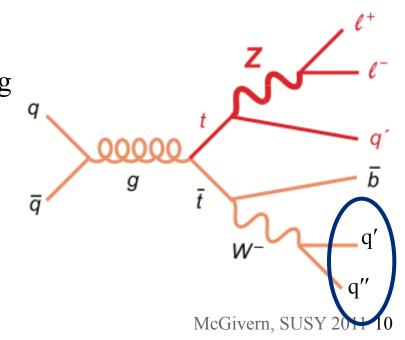

- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section: Physics Letters B 695, 67 (2011)
- Search for signal using new final state: X is any number of jets $p\bar{p} \to t\bar{t} \to Z / Wb) \to \ell\ell\ell\nu + X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)


- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section: Physics Letters B 695, 67 (2011)
- Search for signal using new final state: X is any number of jets $p\bar{p} \to t\bar{t} \to ZqWb \to \ell\ell\ell\nu + X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)


- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p} \to t\bar{t} \to ZqWb \to \ell\ell\ell\nu + X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

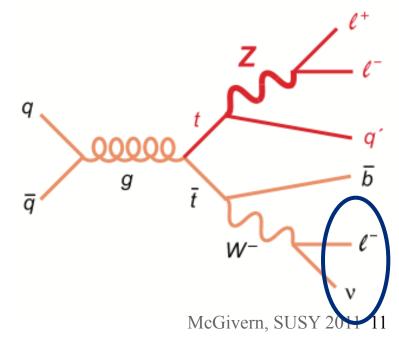

- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section: Physics Letters B 695, 67 (2011)
- Search for signal using new final state: X is any number of jets $p\bar{p} \to t\bar{t} \to ZqWb$ -
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section: Physics Letters B 695, 67 (2011)
- Search for signal using new final state: X is any number of jets $p\bar{p} \to t\bar{t} \to ZqWb \to \ell\ell\ell\nu + X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)



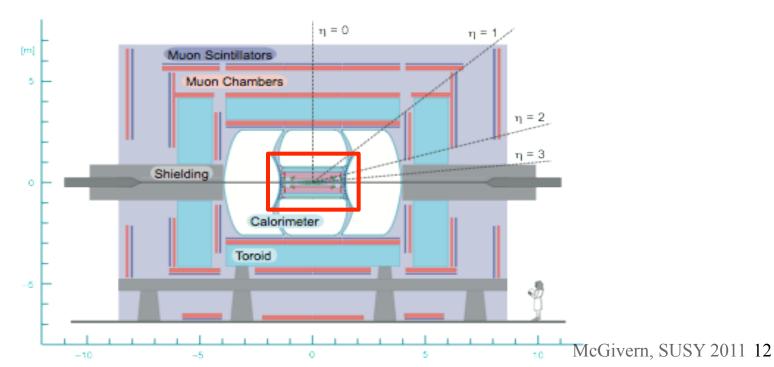
- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p}\to t\bar{t}\to ZqWb\to\ell\ell\ell\nu+X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

- CDF results : $B(t\rightarrow Zq) < 3.7\%$ (observed) with a < 5.0% (expected) at 95% C.L. using 1.9 fb⁻¹ T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett.101, 192002 (2008)
 - $-Z \rightarrow \ell\ell + \geq 4 \text{ jets}$
 - Complementary search



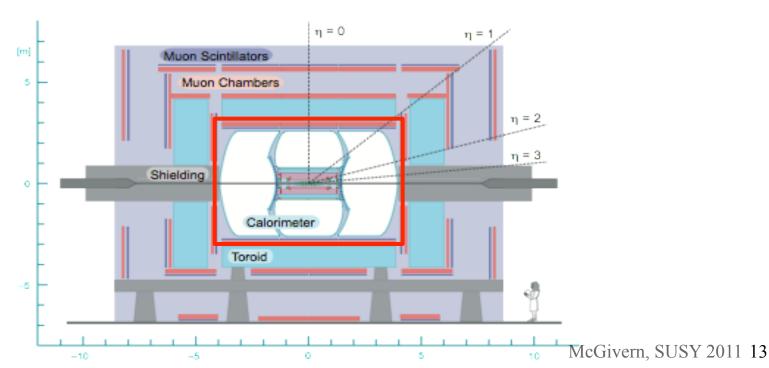
- Use a previous analysis of trilepton + imbalance in transverse momentum for WZ cross section : Physics Letters B 695, 67 (2011)
- Search for signal using new final state : X is any number of jets $p\bar{p}\to t\bar{t}\to ZqWb\to\ell\ell\ell\nu+X$
- Extract or set limits on branching ratio of $t \rightarrow Zq$ (q = u, c)

- ATLAS results: B(t→Zq) < 17%
 <p>(observed) with a < 12% (expected) at 95%</p>
 C.L. using 35 pb⁻¹ ATLAS-CONF-2011-061
 - Three leptons + MET + 2 jets



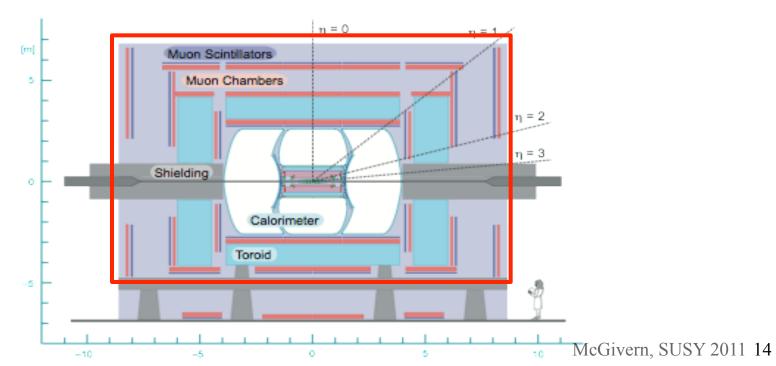
DZero Detector

- Consists of three sub-detectors :
 - Tracking: Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter: EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon: consists of three layers of drift tubes and scintillation counters (one layer inside a 1.8 T toroidal magnet)

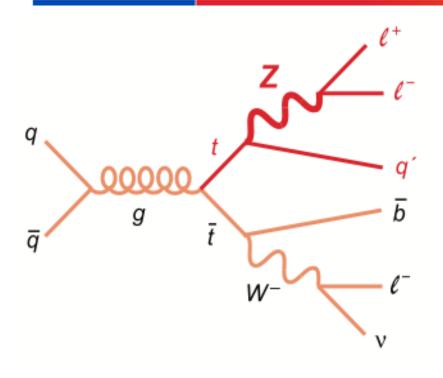


DZero Detector

- Consists of three sub-detectors:
 - Tracking: Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter: EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon: consists of three layers of drift tubes and scintillation counters (one layer inside a 1.8 T toroidal magnet)



DZero Detector


- Consists of three sub-detectors :
 - Tracking: Reconstruct interaction vertices and measure momenta of charged particles, enclosed in a 1.9 T solenoid field
 - Calorimeter: EM and Hadronic calorimeters measure energies of hadrons, electrons and photons
 - Muon: consists of three layers of drift tubes and scintillation counters (one layer inside a 1.8 T toroidal magnet)

Event Selection

 \geq 3 isolated leptons, with high p_T, separated in $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$

Imbalance in transverse momentum (MET)

Three jet multiplicity bins; $0, 1, \ge 2$

All from same vertex

Invariant dilepton mass within Z window

- Use 4.1 fb⁻¹ of integrated luminosity collected in Tevatron Run II, with selection criteria optimized for $s/\sqrt{(s+b)}$.
- Signal : FCNC $t\bar{t}$, Main Backgrounds: WZ, ZZ, Z γ , Z/W+Jets, SM $t\bar{t}$
 - Determined using MC Simulations and Data

FCNC Signal Modeling

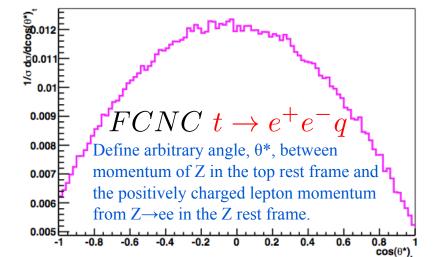
- Use CompHEP to generate the signal at the parton level (to correctly model the helicity structure) and PYTHIA for jet development and hadronization
 - Modified to include the following FCNC Lagrangian

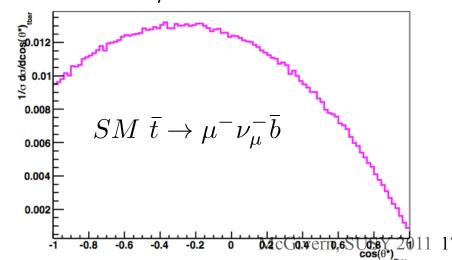
$$\mathcal{L}_{FCNC} = \frac{e}{2\sin\theta_W\cos\theta_W} \,\, \bar{t}\gamma_\mu (\mathbf{v_Z} - \mathbf{a_Z}\gamma_5)cZ^\mu + h.c.$$

T. Han and J. L. Hewett, Phys. Rev. D 60, 074015 (1999).

Assume SM neutral current couplings ($Z \rightarrow q\bar{q}$ for up-type $v_{tuZ} = 1/2 - 4/3\sin^2\theta_W = 0.192, \ a_{tuZ} = 1/2$ quarks):

FCNC Signal Modeling

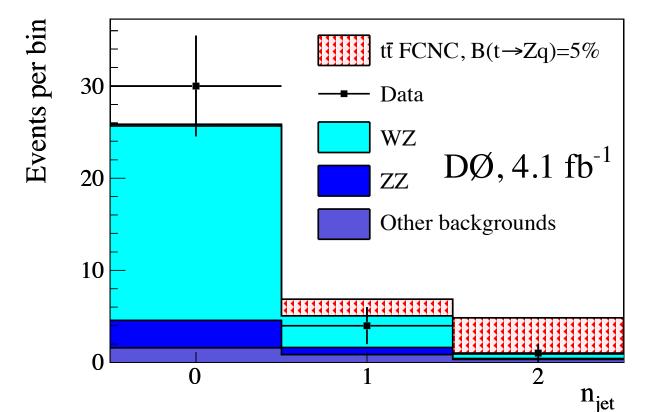

- Use CompHEP to generate the signal at the parton level (to correctly model the helicity structure) and PYTHIA for jet development and hadronization
 - Modified to include the following FCNC Lagrangian


$$\mathcal{L}_{FCNC} = \frac{e}{2\sin\theta_W \cos\theta_W} \, \bar{t}\gamma_{\mu} (\mathbf{v}_Z - \mathbf{a}_Z \gamma_5) cZ^{\mu} + h.c.$$

T. Han and J. L. Hewett, Phys. Rev. D 60, 074015 (1999).

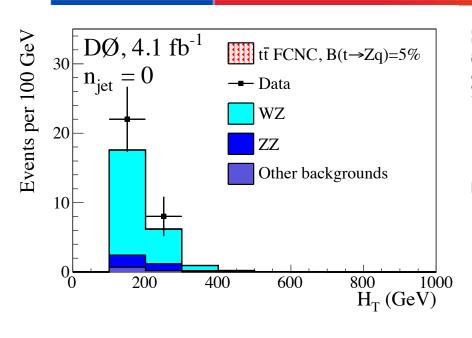
• Assume SM neutral current couplings ($Z \rightarrow q\bar{q}$ for up-type quarks) : $v_{tuZ} = 1/2 - 4/3\sin^2\theta_W = 0.192$, $a_{tuZ} = 1/2$

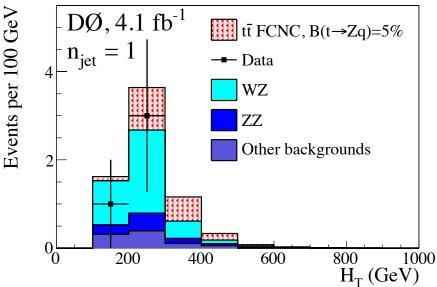
From CompHEP: $p\bar{p} \to t\bar{t} \to ZqW^-\bar{b} \to e^+e^-q\mu^-\nu_\mu^-\bar{b}$

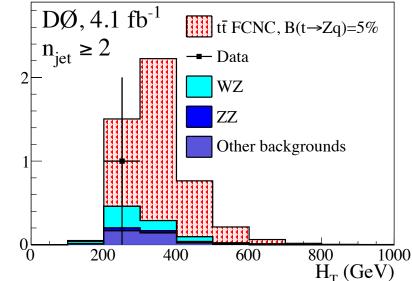


Yields and Jet Distribution

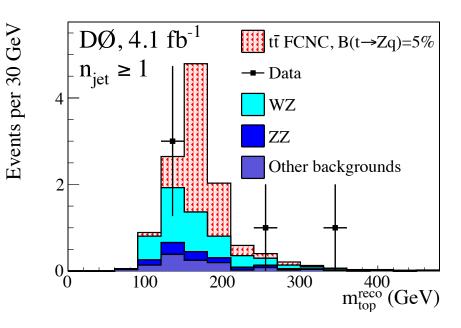
- 35 candidate events
 - Expected background = $31.8 \pm 0.3(stat) \pm 3.9(syst)$ events
- Dominant Systematic Uncertainties: Lepton ID, Theoretical Cross Sections (including FCNC $t\bar{t}$ signal), Jet Energy Scale (JES), Jet Energy Resolution (JER)

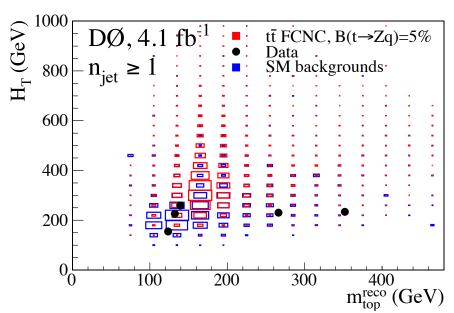

All distributions are shown with $B(t\rightarrow Zq) = 5\%$




Events per 100 GeV

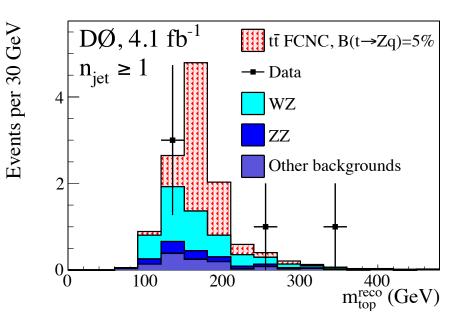
Scalar H_T Distributions

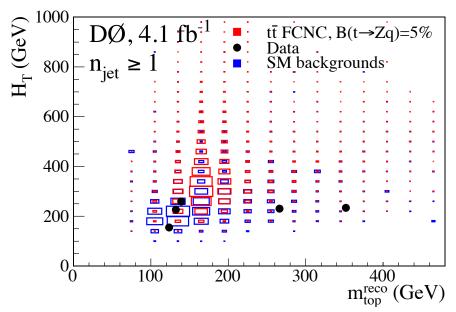

- $H_T = \Sigma p_T(leptons) + MET + \Sigma p_T(jets)$
- H_T peak-value increases with jet multiplicity (n_{jet})



Limits on B($t\rightarrow Zq$)

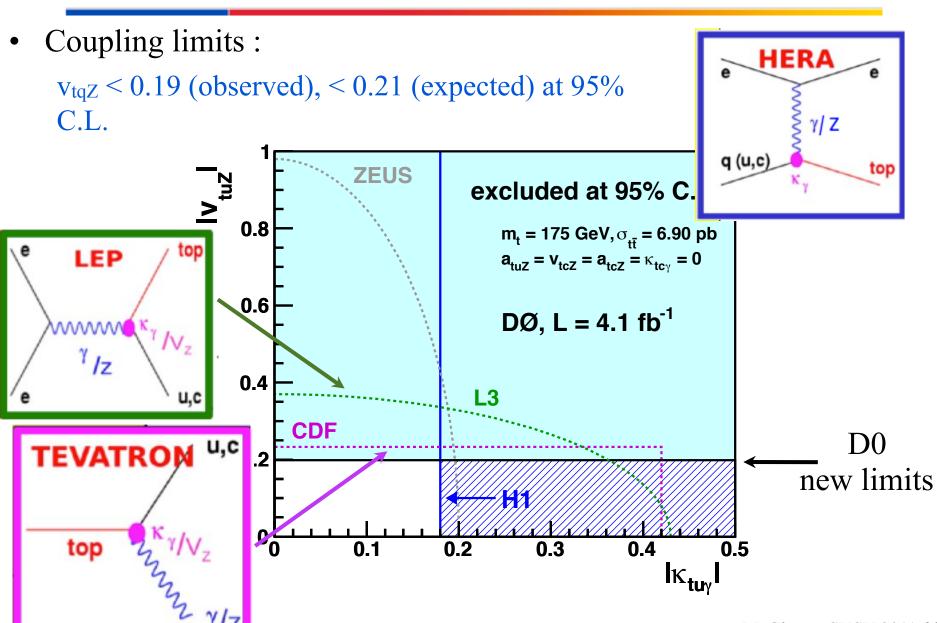
- Use n_{jet} , H_T , and reconstructed top quark mass (m_t^{reco}) (from the two Z leptons and jets) to separate signal from background
- Good separation is observed between signal and background using these three variables



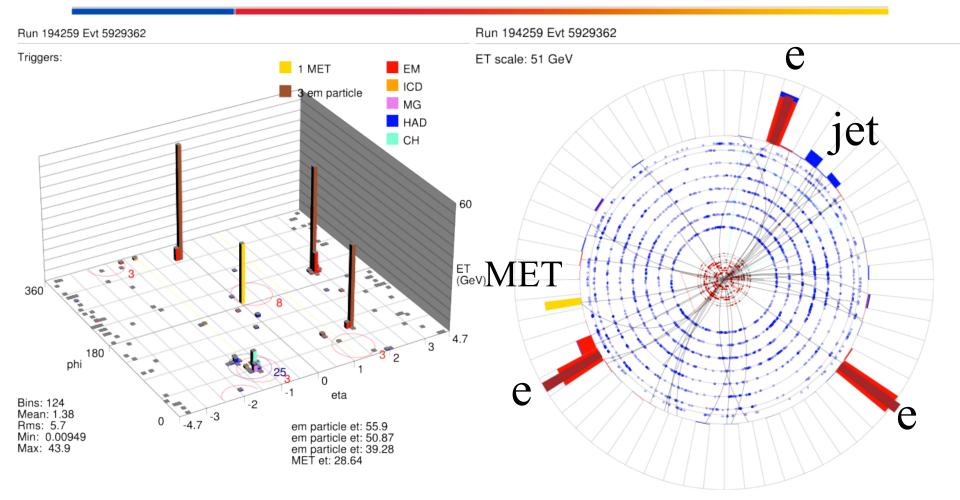


Limits on $B(t \rightarrow Zq)$

- Use Poisson probabilities, with systematic uncertainty parameterized through Gaussian smearing, to extract the limits
- $B(t\rightarrow Zq) < 3.2\%$ (observed), < 3.8% (expected) at 95% C.L.

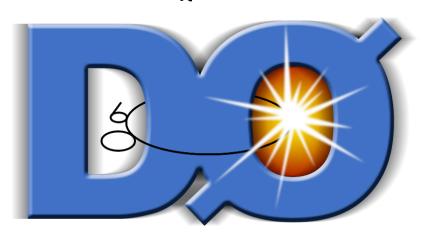


Limits on VtqZ Coupling



Candidate eee+1jet Event

• eee + 1 jet candidate event, with $m_t^{reco} = 351 \text{ GeV}$



Summary

- No indication of new physics at this level of statistics
- Recently published in Physics Letters B 701, 313 (2011)
- $B(t\rightarrow Zq) < 3.2\%$ (observed), < 3.8% (expected) at 95% C.L.
- Coupling limits $v_{tqZ} < 0.19$ (observed), < 0.21 (expected) at 95% C.L.
 - World's best limits on V_{tqZ}!

Long Live

Backup Slides

Detailed Event Selection

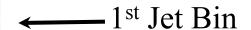
- Look for a signal with 3 or more isolated leptons and an imbalance in transverse momentum (MET)
- Use 4.1 fb⁻¹ of integrated luminosity collected from the Tevatron Run II, selection criteria optimized with $s/\sqrt{(s+b)}$.
- Main Backgrounds: WZ, ZZ, Zγ, V+Jets, SM ttbar
 - Determined using MC Simulations and Data
- General selection criteria for all leptons :
 - Invariant dilepton mass (74 GeV < M_{ee} < 104 GeV, 65 GeV < $M_{\mu\mu}$ < 115 GeV, 60 GeV < M_{eeICR} < 120 GeV)
 - Missing Transverse Energy > (20 30) GeV
 - Lepton $p_T > (15 30) \text{ GeV}$
 - Lepton $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} > 0.5 0.6$
 - $-\Delta z_{DCA}$ (between any two lepton tracks) < 3 cm
 - Jet $E_T > 20$ GeV

FCNC Event Yields

Source	eee	$ee\mu$	$e\mu\mu$
WZ	$5.17 \pm 0.06 \pm 0.97$	$5.72 \pm 0.07 \pm 0.89$	$4.76 \pm 0.06 \pm 0.70$
ZZ	$0.25 \pm 0.03 \pm 0.05$	$1.35 \pm 0.06 \pm 0.21$	$0.52 \pm 0.04 \pm 0.08$
V+jets	$0.42 \pm 0.11 \pm 0.08$	$0.14 \pm 0.04 \pm 0.06$	$0.48 \pm 0.11 \pm 0.01$
$Z\gamma$	$0.18 \pm 0.05 \pm 0.07$	< 0.001	$0.66 \pm 0.07 \pm 0.38$
$tar{t}$	$0.04 \pm 0.01 \pm 0.01$	$0.013 \pm 0.004 \pm 0.002$	$0.05 \pm 0.01 \pm 0.01$
Total bkg.	$6.05 \pm 0.14 \pm 0.98$	$7.22 \pm 0.10 \pm 0.92$	$6.43 \pm 0.15 \pm 0.71$
Observed	7	10	9
Source	$\mu\mu\mu$	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$6.09 \pm 0.07 \pm 1.00$	$1.46 \pm 0.03 \pm 0.24$	$1.78 \pm 0.04 \pm 0.25$
ZZ	$1.31 \pm 0.06 \pm 0.22$	$0.08 \pm 0.01 \pm 0.02$	$0.46 \pm 0.03 \pm 0.07$
V+jets	$0.18 \pm 0.05 \pm 0.03$	$0.18 \pm 0.07 \pm 0.08$	$0.26 \pm 0.18 \pm 0.16$
$Z\gamma$	< 0.001	$0.10 \pm 0.01 \pm 0.03$	< 0.001
$tar{t}$	$0.04 \pm 0.01 \pm 0.01$	$0.010 \pm 0.003 \pm 0.002$	$0.022 \pm 0.004 \pm 0.003$
Total bkg.	$7.75 \pm 0.13 \pm 1.02$	$1.83 \pm 0.08 \pm 0.26$	$2.52 \pm 0.19 \pm 0.31$

← Jet Inclusive

0th Jet Bin


Source	eee	$ee\mu$	$e\mu\mu$
WZ	$4.40 \pm 0.06 \pm 0.83$	$4.80 \pm 0.06 \pm 0.75$	$3.92 \pm 0.05 \pm 0.58$
ZZ	$0.17 \pm 0.02 \pm 0.03$	$1.02 \pm 0.06 \pm 0.16$	$0.33 \pm 0.03 \pm 0.05$
V + jets	$0.16 \pm 0.07 \pm 0.08$	$0.05 \pm 0.02 \pm 0.03$	$0.23 \pm 0.07 \pm 0.01$
$Z\gamma$	$0.11 \pm 0.04 \pm 0.04$	< 0.001	$0.43 \pm 0.06 \pm 0.25$
$t\bar{t}$	$0.001 \pm 0.001 < 0.001$	$0.001 \pm 0.001 < 0.001$	< 0.001
Total bkg.	$4.84 \pm 0.10 \pm 0.84$	$5.87 \pm 0.09 \pm 0.77$	$4.68 \pm 0.08 \pm 0.63$
Observed	6	7	8
Source	μμμ	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$5.02 \pm 0.06 \pm 0.83$	$1.23 \pm 0.03 \pm 0.20$	$1.52 \pm 0.03 \pm 0.22$
ZZ	$0.99 \pm 0.05 \pm 0.17$	$0.05 \pm 0.01 \pm 0.01$	$0.38 \pm 0.03 \pm 0.05$
V + jets	$0.12 \pm 0.04 \pm 0.03$	$0.07 \pm 0.05 \pm 0.04$	$0.25 \pm 0.18 \pm 0.16$
$Z\gamma$	< 0.001	$0.09 \pm 0.01 \pm 0.03$	< 0.001
$t\bar{t}$	$0.002 \pm 0.001 < 0.001$	< 0.001	$0.003 \pm 0.001 < 0.001$
Total bkg.	$6.01 \pm 0.08 \pm 0.85$	$1.44 \pm 0.06 \pm 0.21$	$2.15 \pm 0.19 \pm 0.28$
Observed	4	1	McGivern, SUSY

FCNC Event Yields

Source	eee	$ee\mu$	$e\mu\mu$
WZ	$0.69 \pm 0.02 \pm 0.14$	$0.80 \pm 0.03 \pm 0.14$	$0.73 \pm 0.02 \pm 0.13$
ZZ	$0.07 \pm 0.02 \pm 0.01$	$0.28 \pm 0.03 \pm 0.05$	$0.16 \pm 0.02 \pm 0.03$
V+jets	$0.21 \pm 0.08 \pm 0.04$	$0.06 \pm 0.03 \pm 0.02$	$0.21 \pm 0.06 \pm 0.01$
$Z\gamma$	$0.04 \pm 0.03 \pm 0.02$	< 0.001	$0.17 \pm 0.04 \pm 0.10$
$t\bar{t}$	$0.012 \pm 0.004 \pm 0.002$	$0.006 \pm 0.002 \pm 0.001$	$0.009 \pm 0.002 \pm 0.001$
Total bkg.	$1.02 \pm 0.09 \pm 0.15$	$1.15 \pm 0.05 \pm 0.15$	$1.09 \pm 0.05 \pm 0.17$
Observed	1	2	1
Source	μμμ	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$0.93 \pm 0.03 \pm 0.19$	$0.20 \pm 0.01 \pm 0.04$	$0.24 \pm 0.01 \pm 0.05$
77			
ZZ	$0.28 \pm 0.03 \pm 0.06$	$0.02 \pm 0.01 \pm 0.01$	$0.08 \pm 0.01 \pm 0.01$
V + jets	$0.28 \pm 0.03 \pm 0.06$ $0.07 \pm 0.03 \pm 0.03$	$0.02 \pm 0.01 \pm 0.01$ $0.04 \pm 0.03 \pm 0.04$	$0.08 \pm 0.01 \pm 0.01$ < 0.001
V+jets	$0.07 \pm 0.03 \pm 0.03$	$0.04 \pm 0.03 \pm 0.04$	< 0.001
$V+jets \ Z\gamma$	$\begin{array}{c} 0.07 \pm 0.03 \pm 0.03 \\ < 0.001 \end{array}$	$0.04 \pm 0.03 \pm 0.04$ $0.016 \pm 0.004 \pm 0.005$	< 0.001 < 0.001

Source	eee	$ee\mu$	$e\mu\mu$
WZ	$0.08 \pm 0.01 \pm 0.02$	$0.12 \pm 0.01 \pm 0.03$	$0.11 \pm 0.01 \pm 0.04$
ZZ	$0.0108 \pm 0.005 \pm 0.003$	$0.04 \pm 0.01 \pm 0.02$	$0.03 \pm 0.01 \pm 0.02$
V + jets	$0.06 \pm 0.04 \pm 0.08$	$0.04 \pm 0.03 \pm 0.01$	$0.03 \pm 0.03 \pm 0.01$
$Z\gamma$	$0.03 \pm 0.02 \pm 0.01$	< 0.001	$0.05 \pm 0.02 \pm 0.03$
$t\bar{t}$	$0.011 \pm 0.004 \pm 0.002$	$0.006 \pm 0.003 \pm 0.001$	$0.03 \pm 0.01 \pm 0.01$
Total bkg.	$0.19 \pm 0.05 \pm 0.08$	$0.21 \pm 0.03 \pm 0.04$	$0.65 \pm 0.11 \pm 0.06$
Observed	0	1	0
Source	$\mu\mu\mu$	$ee_{ICR}e$	$ee_{ICR}\mu$
WZ	$0.14 \pm 0.01 \pm 0.04$	$0.03 \pm 0.01 \pm 0.01$	$0.03 \pm 0.01 \pm 0.01$
ZZ	$0.04 \pm 0.01 \pm 0.02$	$0.004 \pm 0.003 \pm 0.004$	$0.008 \pm 0.004 \pm 0.002$
V + jets	< 0.001	$0.07 \pm 0.04 \pm 0.04$	< 0.001
$Z\gamma$	< 0.001	$0.001 \pm 0.001 \pm 0.001$	< 0.001
$t\bar{t}$	$0.018 \pm 0.004 \pm 0.003$	$0.002 \pm 0.002 < 0.001$	$0.011 \pm 0.003 \pm 0.002$
Total bkg.	$0.50 \pm 0.09 \pm 0.05$	$0.11 \pm 0.04 \pm 0.04$	$0.05 \pm 0.01 \pm 0.01$
Observed	0	0	0
$Source \\ WZ \\ ZZ \\ V+jets \\ Z\gamma \\ t\bar{t} \\ Total~bkg.$	$\mu\mu\mu$ $0.14 \pm 0.01 \pm 0.04$ $0.04 \pm 0.01 \pm 0.02$ < 0.001 < 0.001 $0.018 \pm 0.004 \pm 0.003$ $0.50 \pm 0.09 \pm 0.05$	$\begin{array}{c} 0.03 \pm 0.01 \pm 0.01 \\ 0.004 \pm 0.003 \pm 0.004 \\ 0.07 \pm 0.04 \pm 0.004 \\ 0.001 \pm 0.001 \pm 0.001 \\ 0.002 \pm 0.002 < 0.001 \end{array}$	$\begin{array}{c} ee_{ICR}\mu \\ 0.03 \pm 0.01 \pm 0.01 \\ 0.008 \pm 0.004 \pm 0.00 \\ < 0.001 \\ < 0.001 \\ 0.011 \pm 0.003 \pm 0.00 \end{array}$

McGivern, SUSY 2011 28